

Mesure in situ de la courbure: principe, limitations et étude de cas

Grégory Abadias

Professeur, Université de Poitiers, France Institut P', Département Physique et Mécanique des Matériaux,

Outline

✓ Introduction

✓ Origins of residual stress in PVD thin films

✓ Mechanics of thin plates: curvature and stress

Experimental determination of wafer curvature

✓ Selected examples

- Multilayers
- Epitaxial growth and stress relaxation
- Stress evolution during Volmer-Weber growth

✓ Coupling with other *in situ* diagnostics

- interface reactivity: Cu on a-SiOx and a-Ge
- segregation in Au/Ni multilayers
- phase transformation in Mo/Si

Organic electronics and flexible electronic displays

Thin film solar cells on flexible substrates

tensile stress

V.B. Shenoy, International Journal of Fracture 109: 29-45 (2001)

Fabrication de micro-rouleaux ou d'origami

V. Prinz et al., Physica E **6**, 828, 2000 S. Golod et al., Appl. Phys. Lett. **84** (17), 3391, 2004

C. Fontaine, Chapitre 10, "Exploitation des contraintes dans les structures à base de semi-conducteurs", Ed. Hermes (2006)

Why thin films are usually in a stressed state?

This is because the lateral dimensions of the layer are fixed by those imposed by the macroscopic (and infinitely rigid) substrate layer > substrate layer < substrate compressive stress state tensile stress state $\sigma < 0$ $\sigma > 0$

Force (in Newton) applied in the film plane

Definitions

- Definition: a stress (σ) is a force (F) per unit surface area (A): $\sigma = F/A$
- Unit: Newton per square meter: N/m² or Pascal (Pa)
- A stress is therefore a quantity homogenous to a pressure
- It is a third order, 2nd rank tensor
- Origin: stress arises due to presence of (internal or external) forces which are generated in the deformed layer

$$= \begin{pmatrix} \sigma_{11} & \sigma_{21} & \sigma_{31} \\ \sigma_{12} & \sigma_{22} & \sigma_{32} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} \end{pmatrix}$$

· Characteristics:

- For thin layers, the presence of a free surface sets that the stress generated in the layer is usually **biaxial** = in the film plane, i.e., the σ_{33} component is zero

- If the substrate is sufficiently thin, then it can curve as a result of stress in the layer

concave radius of curvature on the film side (R>0) **convex** radius of curvature on the film side(R<0) The curvature is $\kappa = 1/R$ given in m⁻¹

Stress and strain

• Characteristics (cnt'd): stress and strain in polycrystalline thin films

Potentialities offered by curvature technique

- No need to know the elastic properties of the studied material
- Stress can be measured in amorphous (sub)layers
- In situ stress monitoring during growth
- Surface and interface stress can be uncovered
- Phase transition can be observed in real-time

D. Sander et al., J. Phys.: Condens. 10 Matter 21 (2009) 134015

Fe on Ir (001)

Physical origins of stresses in thin films

Stress sources

• Usually, three stress components are distinguished

$$\sigma_{tot} = \sigma_i + \sigma_{th} + \sigma_{ext}$$

- Thermal stress σ_{th} difference in thermal expansion coefficient between film and substrate and when $T_s \neq T_{amb}$

- Intrinsic stress σ_i Stress source introduced during the PVD process: growth stress, coherency stress

- Extrinsic stress σ_{ext} Induced by external factors: external loading, lifetime service, exposure to environment

• Usually, three stress components are distinguished

 $\sigma_{tot} = \sigma_i + \sigma_{th} + \sigma_{ext}$

- Thermal stress σ_{th} difference in thermal expansion coefficient between film and substrate and when $T_s \neq T_{amb}$

- Intrinsic stress σ_i Stress source introduced during the PVD process: growth stress, coherency stress

- Extrinsic stress σ_{ext} Induced by external factors: external loading, lifetime service, exposure to environment

Originates from strained regions

- *within the film* due to any micro-structural modification (grain boundaries, dislocation, voids), defects formation (point-defect, impurities, etc)

- at the film/substrate interface (lattice mismatch, intermixing, growth mode)
- at the film/vacuum interface (surface stress, adsorption)
- as a result of dynamic processes (interdiffusion, recrystallisation, etc...)

Stress sources

Possible mechanisms of intrinsic stress

- surface and/or interface stress,
- cluster coalescence to reduce surface area,
- grain growth, or grain boundary area reduction,
- vacancy annihilation,
- grain boundary relaxation,
- shrinkage of grain boundary voids,
- incorporation of impurities,
- phase transformations and precipitation,
- impurity adsorption or desorption,
- lattice mismatch strain in heteroepitaxy,
- structural damage (defect creation) as a result of energetic particle bombardment

Stress sources: thermal stress

- Thermal stress σ_{th}

difference in thermal expansion coefficient between film and substrate and when $T_s \neq T_{amb}$

$$\sigma_{th} = \frac{E_f}{1 - \nu_f} \left(\alpha_s - \alpha_f \right) \left(T_{amb} - T_s \right)$$

TEC

$$\alpha = \frac{1}{3V} \left(\frac{\partial V}{\partial T} \right)_P = \frac{1}{3\kappa} \left(\frac{\partial P}{\partial T} \right)_V = \frac{\gamma C_V}{3\kappa}$$

If $\alpha_{\rm f} > \alpha_{\rm s}$, tensile stress develops during cooling

Stress sources: thermal stress

The slope of the $\sigma(T)$ curve is the thermoelastic response of the film, provided that <u>no microstructural changes</u> had occurred on cooling and re-heating

Biaxial stress in a 0.4 mm thick thin film of Al-1%Si-0.5%Cu on a silicon substrate during several thermal cycles from room temperature to 250°C

from Nix, Metallic thin films: stresses and mechanical properties, (K. Barmak and K. Coffey editors), Chap. 8, Woodhead Publishing, 2014

Stress sources: phase transformation

 β to α phase transformation in Ta films subjected to vacuum annealing

Influence of microstructure on TEC

Magnetron-sputtered Cr films

- Manifest evolutionary growth regime (zone-T)
- Highest TEC for smallest grain size
- TEC is larger for GB region due to
- Weaker bonding of GB atoms (2 anharmonicity)
- Porosity
- Increased heat capacity (Debye model)

from Daniel et al., acta Materialia 59 (2011) 6631

Stress sources: epitaxial stress

• Coherence strains develop in thin films that growth epitaxially onto flat single crystal substrate, in a 2D growth mode (layer by layer)

• The lattice mismatch between film (a_f) and substrate (a_s) or **misfit** is accommodated by in-plane elastic strains, ϵ_1 and ϵ_2 , resulting in a biaxial stress state

$$\varepsilon_{mis} = \frac{a_s - a_f}{a_s}$$

1) Cubic systems

Here, $a_f < a_s$, elastic misfit strain ε_{mis} is positive, resulting in tensile stress $\sigma > 0$

$$\varepsilon_{1} = \varepsilon_{2} = \frac{a_{parallel} - a_{f}}{a_{f}} = \varepsilon_{mis} \qquad \qquad \sigma_{1} = \sigma_{2} = Y \varepsilon_{1} \qquad \text{Y= biaxial modulus}$$
$$\varepsilon_{3} = \frac{a_{perp} - a_{f}}{a_{f}} = -2 \frac{c_{12}}{c_{11}} \varepsilon_{1}$$

Coherency stress

coherent growth

incoherent growth

Misfit strain

$$\varepsilon = \frac{a_s - a_f}{a_f}$$

h_c= critical thickness for strain relaxation

Model of Matthews et Blakeslee (1974) based on the balance of acting forces on a threading dislocation

Introduction of misfit dislocations to relax the misfit strain

Stress and dynamics of film growth

during growth - surface different than eq. (much larger incoming flux than outgoing)

Growth modes at equilibrium (thermodynamic conditions)

The three growth mode categories are schematically shown.

- Frank-van der Merwe growth mode corresponds to a layer-by-layer (2D) growth
- Volmer-Weber growth mode corresponds to to an island (3D) growth.
- The Stranski-Krastanov growth mode is a mixture of the 2D and 3D growth modes, often observed for semi-conductor thin films

Stress and dynamics of film growth

Mechanics of thin plates: curvature and stress

Bending of a thin plate

- In-plane biaxial stress $\sigma_{\chi\chi} = \sigma_{\chi\gamma} = \sigma(z)$ and $\sigma_{ZZ} = 0$
- In-plane elastic strain $\varepsilon_{xx} = \varepsilon_{yy} = \varepsilon(z) = \frac{z}{R} = -\kappa z$ $\kappa < 0$ in the figure

reference (z=0) is taken at the **neutral plane** (z_0)

• Hooke's law $\varepsilon(z) = \frac{1}{E}\sigma_{xx} - \frac{\nu}{E}\sigma_{yy} - \frac{\nu}{E}\sigma_{zz} = \frac{1-\nu}{E}\sigma(z)$ $Y = \frac{E}{1-\nu}$ Biaxial modulus $\sigma(z) = Y \varepsilon(z)$

25

Bending of a thin plate

• Bending moment $M = \int_{-z_0}^{h-z_0} \sigma(z) \cdot z \cdot dz = Y \int_{-z_0}^{h-z_0} \frac{z^2}{R} dz \qquad (1)$

Origin of bending: stress in the film supplies a force that leads to a bending moment at the edges of the substrate and causes it to bend

Solving eq.(1) for
$$z_0 = h/2$$
, one obtains $M = -Y \frac{h^3}{12} \kappa$ (2)
However, one has $\sigma(z) = -Y\kappa z$ (3) $\sigma = 12 \frac{M}{h^3} z$ (4)

 \Rightarrow Positive bending (M>0) produces tensile stress (σ >0) and strain for z>0

 \Rightarrow Negative curvature results from positive bending strain for z>0

Curvature of a film/substrate plate

Plate geometry

Assumptions

- elastic, homogeneous and continuous materials
- isotropic elastic properties of film and substrate
- in-plane, biaxial stress state in the film

- tranverse cross-section remain plane during bending
- P no interfacial delamination
- Equilibrium conditions (to be satisfied)

$$\sum F = 0$$
 et $\sum M = 0$

sum of longitudinal forces F = 0 internal bending moment M = 0

Curvature of a film/substrate plate

Let's assume the distance from neutral plane to the film surface is αh_s

Solving equilibrum conditions yields

• $\int_{(\alpha-1)h_s}^{\alpha h_s} \sigma_{xx} dz + \overline{\sigma} h_f = 0$ (5)

•
$$\int_{(\alpha-1)h_s}^{\alpha h_s} \sigma_{xx} z \, dz + (\alpha h_s) \overline{\sigma} h_f = 0$$

Inserting eq.(3) into eqs.(5) and (6) yields

$$-\frac{Y\kappa}{2}(2\alpha-1)h_{s}^{2}+\overline{\sigma}.h_{f}=0$$

$$-\frac{Y\kappa}{3}(3\alpha^{2}-3\alpha-1)h_{s}^{3}+\alpha h_{s}\overline{\sigma}.h_{f}=0$$
(8)

Multipling eq.(7) by αh_s and subtracting it from eq.(8) yields

$$\alpha = \frac{2}{3}$$
 and $\overline{\sigma}.h_f = \frac{Y\kappa h_s^2}{6} = \frac{E}{(1-\nu)}\frac{h_s^2}{6R}$

Stoney equation

Note: Original Stoney equation was

$$\sigma . h_f = E \frac{h_s^2}{6R}$$

28

Case of anisotropic single-crystal substrates

(100) Si single-cristal
 Y₁₀₀=180.5 GPa

$$\sigma h_f = \left(\frac{1}{s_{11} + s_{12}}\right) \frac{h_s^2}{6R}$$

(111) Si single-cristal
 Y₁₁₁=229.1 GPa

$$\sigma h_f = \left(\frac{6}{4s_{11} + 8s_{12} + s_{44}}\right) \frac{h_s^2}{6R}$$

Consequence of crystal elastic anisotropy:

For the same stress state in the W films, the substrate curvature is larger for (100) Si substrates

Case of anisotropic single-crystal substrates

Note that the curvature measurements for both the bare and coated substrates must be measured along the same path

The in-plane stiffness of a silicon (001) wafer depends on the angular direction, E $_{[110]}$ =171 GPa and v $_{[110]}$ =0.26, while E $_{[100]}$ =130 GPa and v $_{[100]}$ =0.28

from Nix, Metallic thin films: stresses and mechanical properties, (K. Barmak and K. Coffey editors), Chap. 8, Woodhead Publishing, 2014

Bending induced stress in the film

The substrate bending creates a force which opposes to the intrinsic stress existing/developping in the film. This stress relaxation is however negligible in most cases, as $h_f << h_s$. Its expression can be derived according to

$$\sigma_f^{bend} = -Y_f \frac{z^{\max}}{R} = -\frac{2h_s}{3R} \frac{E_f}{1 - \nu_f}$$

$$\sigma_f^{bend} = -4 \sigma_f \frac{Y_f}{Y_s} \frac{h_f}{h_s} \quad \text{or} \quad \frac{\Delta \sigma_f^{bend}}{\sigma_f} = -4 \eta \delta$$

$$\delta = \frac{h_f}{h_s}$$

$$\eta = \frac{Y_f}{Y_s}$$

thickness ratio

biaxial modulus ratio

Note that this bending induced change in stress is that expected for burried layers. This effect has to be bore in mind when growing multilayered systems!

Exercise: calculate for the stress induced by layer A (σ_A =–2GPa) in burried layer B using δ =0.15 % and η =2.3.

Answer: σ = 24 MPa

What is the stress state in the substrate?

- For *homogeneous* thin layers, the stress in the substrate is usually negligible ~1-2% of the film stress
- This is no longer the case when the layer is *inhomogeneous*, e.g. in trenches and vias of microelectronic devices (see below)

-0.5

-1.5

$$z^{\max} = 2\frac{h_s}{3}$$

Stoney equation: summary

Stoney equation

$$\sigma h_f = \frac{1}{6} Y_s h_s^2 \kappa_{stoney} = \frac{F}{w}$$

- Valid only for the assumptions described before
- No requirement of film elastic properties

The Relates the curvature κ (m⁻¹) to the "film force per unit width", F/w (N/m), which is equal to the film stress*thickness product quantity

• Numerical application: (001) Si wafer, Y_s=180.5 GPa

$$\frac{F}{w} = 10 \ N/m, \quad h_s = 200 \ \mu m \Longrightarrow R = 120 \ m$$

1 N/m = 10 GPa.Å

33

Stoney's equation: important aspects and limitations

$$\Delta \kappa = \kappa - \kappa_0 = \frac{6 \sigma h_f}{Y_s h_s^2}$$

One measures the relative change in curvature!

for *post-deposition* determination of film stress, one needs to measure the absolute curvature both before and after deposition, <u>along the same path</u>
 for real-time measurement during growth, the change in curvature is obtained directly, once the reference curvature has been done on the initial substrate

The curvature is inversely proportional to the square of the substrate thickness
 Maximum sensitivity requires very thin (100-200 μm) wafers; however, for deposition of thick coatings (several μm) with large stresses, thicker wafers should be used to avoid finite deflection effects (as discussed after)

• To derive stress from curvature measurement, the independent knowledge of **film thickness** is needed; accurate determination of the growth rate is required, e.g. using quart microbalances, post-growth XRR or profilommetry

Stoney's equation: important aspects and limitations

elastic anisotropy

Angle dependent curvature for a 358 nm-thick W film on Si(111)

from Janssen et al., Thin Solid Films 517 (2009) 1858

Despite strong elastic anisotropy (30% for Si), the deformation of (111) or (100) Si substrates, is **radially symmetric** due to symmetry of constitutive strain-stress relationships. This is no longer the case for (110) orientation, or for stronger deflections (as discussed in the next slides).

Stoney's equation: important aspects and limitations

• Complete calculation: $h_f \ll h_s$ and $Y_f \sim Y_s$

$$\kappa = \frac{6\sigma h_f}{Y_s h_s^2} \frac{1+\delta}{1+4\eta\delta+6\eta\delta^2+4\eta\delta^3+\eta^2\delta^4}$$

$$\delta = \frac{h_f}{h_s}$$

thickness ratio

 $\eta = \frac{Y_f}{Y_f}$

$$\frac{\kappa - \kappa_{Stoney}}{\kappa_{Stoney}} = \delta \ (1 - 4\eta)$$

1st order

Error introduced when the thin film approximation is no longer valid

$$\delta \approx 3\%, \quad \eta = 1 \Longrightarrow \frac{\Delta \kappa}{\kappa} \approx 10\%$$

Stoney's equation: important aspects and limitations

The error in using Stoney equation when the thin film approximation is relaxed

Case of strong deflections: non-linearity and bifurcation

1st case: axially symmetric deformation in the nonlinear regime

Freund et al. have introduced the normalized film strain parameter S_f and normalized curvature K

$$S_f = \frac{3}{2} \left(\frac{R_s}{h_s}\right)^2 \frac{\sigma_f}{M_s} \frac{h_f}{h_s} \qquad K = \frac{R_s^2}{4h_s} \kappa$$

For large substrate deflections, the use of Stoney equation is inadequate and will lead to an underestimate of the film stress

L. B. Freund, J. Mech. Phys. Solids. 48 (2000) 1159

Case of strong deflections: non-linearity and bifurcation

strong plate deflections: Z

 $\frac{Z}{h_s} = \frac{3}{4} \frac{F}{Y_s} \frac{d^2}{h_s^3}$

two principal in-plane curvature

$$(\kappa_x - \kappa_y) \left[\kappa_x \kappa_y R_s^4 (1 + \nu) - 16 (h_s + h_f)^2 \right]$$

The mode of deformation is determined by the parameter A

$$A = \frac{D_s^2}{h_s^3} \sigma_f h_f$$

Case of strong deflections: non-linearity and bifurcation

2nd case: bifurcation of equilibrium shapes

For R_s/h_s >25, the critical parameter is A_c =680 GPa for Si substrate

- For A< 0.2 A_c , the use of Stoney equation is correct within 10%
- For $0.2 A_c < A < A_c$, the deformation is still axially symmetric but the curvature is significantly lower than that predicted by Stoney equation
- For A > A_c, then bifurcation will occur with a large curvature in one direction and almost no curvature in the perpendicular direction

The requirement $A < 0.2 A_c$ leads to maximum force per unit width for 90% accuracy of the Stoney Equation of

 $d = 1 \text{ cm}, h_s = 100 \text{ }\mu\text{m}, F = 1.36 \text{ GPa.}\mu\text{m} = 1360 \text{ N/m}$ $z = 56.6 \text{ }\mu\text{m}$

In practical cases, film force up to 500 N/m, so A=50 GPa i.e., A/A_c = 7.3 %

Be aware of what you measure!

Influence of plastic deformation of the substrate

t/d-ratio 800 °C 850 °C 900 °C 950 °C 1000 °C stress limit for t/d = 0.1 % 1.0 % ſ 100 Coating stress σ_{c} [GPa] 0.5 % stress relaxation Residual stress $\sigma_{ m c}$ [MPa] 0.1 % -1000 -2000 -3000 -4000 - Si (111) Si (100) -5000 0.1 -200 300 400 500 600 100 500 600 400 700 800 Temperature [°C] Temperature [°C]

TiAIN coatings on Si(001) substrate

t= film thickness; d= substrate thickness

Apparent stress increase upon heating, but due to plastic deformation in the Si substrate

- brittle to ductile transition of Si starts between 400 and 500 °C
- critical resolved shear stress for Si around 20-30 Mpa at 600°C

Experimental determination of wafer curvature

How measuring residual stress (or strain) in thin films?

'wafer curvature' method

 \Rightarrow integrated (macroscopic) stress \Rightarrow in-situ diagnostic

X-ray Diffraction

- \Rightarrow internal (microscopic) strain gauge
- \Rightarrow in-situ diagnostic
- \Rightarrow limited to crystalline materials

Welzel et al., J. Appl. Crystal. 38, 1 (2005)

Techniques for real-time stress measurements

• XRD

 \Rightarrow time-resolved strain measurements only possible with bright sources such as the synchrotron (Lairson et al. 1995)

• RHEED : Reflection High Energy Electron Diffraction
 ⇒ lattice constant at the surface during epitaxial growth
 ⇒ limited to high-vacuum environment

Vibrating membrane technique
 ⇒ film internal friction can be obtained
 ⇒ only tensile stress are measured

• Raman spectroscopy ⇒ during annealing and external stress loading of dielectric films

Wafer curvature-based techniques offer the best overall compromise between versatility, simplicity, sensitivity and compatibility with a variety of film deposition processes.

Methods for curvature measurements

• point deflection : rectangular strip clamped substrate Measured by capacitance change, interferometric method, CCD camera

 height analysis:
 Stylus profilometer or optical interferometry z(x,y) (poor sensitivity)

• lattice bending XRD on single crystal substrate (Segmuller et al. 1980)

laser deflectometry
Translational or rotational scanning; good sensitivity (40 km), 1 km in deposition chamber (with vibrating noise)

Problem overcome with multipoint illumination (MOSS)

Sample rotation (uniform thickness or stoechiometry) ⇒Synchronous trigger

XRD lattice bending

46

Cantilever technique

$$\kappa = \frac{1}{R} = \frac{2}{\sqrt{(l^2 - d^2)}} \sin\left[\tan^{-1}\left(\frac{d}{l}\right)\right]$$

- The deflection can be measured using a microscope or video camera It suffers from a lack of sensitivity: 10 GPa.Å
- Restoring methods, in which a known force is applied to the end of the beam so as to balance out the deflection of the beam due to the stress
- Optical measurement of the end point deflection *d* or curvature κ using laser beam; well adapted for in situ monitoring
- Capacitive measurement of the end point deflection *d*; not particularly suited for curvature monitoring in constrained space

Fluri et al., Elsevier book (2018)

Cantilever technique

from Wilcock, Thin Solid Films 3 (1969) 3

Deflection and bowing

• End deflection δ

Let's consider a substrate in the form of a cantilever beam of length *L*, width w, and thickness t_s such that L >> w >> t_s , clamped at one end as shown in the figure

eq. valid for biaxial bending

- Substrate bowing
- ☞ Valid if Z<<hs

Cantilever technique: two-beam setup

An order of magnitude for the surface stress change of a monolayer coverage is 1 N.m⁻¹, and a stress sensitivity better than 0.01 N.m⁻¹ can be easily obtained

D. Sander et al., J. Phys.: Condens. Matter 21 (2009) 134015

Cantilever technique: multi-beam optical stress sensor (MOSS)

MOSS offers simultaneous multipoint illumination and detection

It consists of the following different optical elements

- Laser source: standard diode laser (658 nm) with Peltier cooling system
- Two etalons: piece of glass with parallel faces of high reflectivity, allowing to split the laser into parallel beams in X and Y directions
- A servo-controlled **mirror** allowing automated tracking capability of deflected beams for data acquisition
- A CCD video camera: standard (480x640 pixels) or high resolution (1300x1030 pixels), acquisition time of 8 ms; dimension of 0.8x1 cm

Possibility to trigger the CCD acquisition with rotation of the substrate, as small wobbles aorund the rotation axis can cause very large mouvements of the MOSS beam

MOSS: principle of measurement

Multi-beam optical stress sensor (MOSS)

MOSS: data acquisition

computer controlled detection system combined with proven fitting algorithms result in typical radius of curvature detection of 4 to 50 kilometers depending on system geometry.

Conversion of beam deflection measurement to curvature

54

Conversion of beam deflection measurement to curvature

2) Horizontal beam array geometry

$$\kappa = \frac{\delta w}{w_0} \frac{1}{2L\cos\alpha}$$

Summary

• The conversion factor between surface curvature and mean differential spacing depends on the incident angle α and distance from sample to detector L

• It is different by a factor $\cos^2 \alpha$ for arrays of beams that are separated along the direction of the beam propagation(vertical array) and those normal to the direction of propagation (horizontal array)

e.g., at α =60 deg, the deflection of beams is 4 times larger for a vertical array than for a horinzontal array

Influence of sample mounting on bending

One side clamping

 \rightarrow Biaxial stress for large *L/w* ratio L/w > 3

- Two sides clamping
 - \rightarrow Uniaxial stress

 $\overline{\sigma}.h_f = \frac{E}{(1-v^2)} \frac{h_s^2}{6R}$

 $\overline{\sigma}.h_f = \frac{E}{(1-\nu)}\frac{h_s^2}{6R}$

Dimensionality of the bending

Free-standing sample mounting

MOSS: resolution and sensitivity

Resolution

There are two dominant sources of error in MOSS measurements.

- The first is the *noise* or error in the measurement of the beam spacing from a single sample.
- The second is determining the difference in the beam spacing that is due to stress in the film.

Reduction of noise during in situ curvature measurements by using multiple beams

MOSS: resolution and sensitivity

Sensitivity

- Data acquisition averaged over 4 measurements of $\delta d/d_0$
- Acquisition rate: 1.25 Hz
- Typical relative incertitude in $\delta d/d_0$: 3.4 ×10⁻⁴
- Corresponding sensitivity in curvature κ : 2.4 $\times 10^{-4}~m^{-1}$

and film force F/w: 0.29 N/m

MOSS: incertitudes of measurements

Incertitudes

Substrate thickness

 $\Delta h_{\rm s}$ = ± 2 μ m

• Film thickness

 $\Delta h_{\rm f}/h_{\rm f}$ = 1% from XRR

MOSS: experimental set-up

Easy implementation

- deposition chamber •
- vacuum furnace •
- Ion implantation ٠

cache

Holder for freestanding sample: the same simply rests face-down on a circulate plate

Resolution : $\Delta \mathbf{R} \sim \mathbf{2} \ \mathbf{km}$

What quantity is measured during MOSS acquisition?

Lf

How to extract the average stress from real-time force data?

The average stress is obtained by integrating the stress distribution $\sigma(z)$ over the thickness of the film

What do we learn from the time-derivative of the curvature?

- incremental stress (or instantaneous stress), corresponding to the stress of additional topmost deposited layer
- modification of the stress state in the buried layers

Selected examples

Stress evolutions during 3D Volmer-Weber growth

Volmer-Weber (3D) growth mode of high-mobility metal: Ag on Si

compressive-tensile-compressive (CTC) behavior \Rightarrow typical of high-mobility metals growing in Volmer-Weber mode

- Reversible stress change upon growth interrupt
- ⇒ Spontaneous flow of excess atom at the GB ?
- ⇒ Morphological rearrangement ?

Floro et al. JAP (2001) Abermann and Koch (1986) Shull and Spaepen (1996) Gonzalez-Gonzalez, PRL (2013)

Two archetypes of stress evolution

Schematic drawing for metal films grown by thermal evaporation

Characteristic CTC behavior

Floro et al., J. Appl. Phys. 89, 4886 (2001)

Archetypal stress evolution

Depending on the material mobility (or homologous temperature T_s/T_m), the force evolution may be more complex

• For **intermediate** adatom mobility, like Ni or Pd evaporated films, a **stress turnaround** is observed in the later stages, where the instantaneous stress changes from compressive to tensile

• The turnaround thickness increases as the substrate temperature is increased or the deposition rate is decreased

Stress evolution with material mobility

Koch, SCT 204 (2010) 1973

Similar stress evolutions suggest similar atomistic processes of stress build-up

What do we learn from the time derivative of the curvature?

Figure 4. Change in curvature when growth is interrupted corresponds to changing stress in the layers that have already been deposited without the addition of new layers. Example: Cu sputter-deposition at different pressure

Possible reasons:

- a change in temperature can add a thermally-induced stress to all the layers of the film.
- relaxation processes (mechanisms discussed later)

71

Stage I: capillary-induced compressive stress

 h_c = critical thickness at which the grains become firmly attached to the substrate, or «locked down», corresponding to radius R_{Id}

For
$$R > R_{\text{ld}}$$
 $\epsilon_{\text{m}} = \frac{1 - 2\nu_{\text{f}}}{E_{\text{f}}} \left(\frac{2f}{R} - \frac{2f}{R_{\text{ld}}}\right)$ $\sigma = \frac{2f}{R_{\text{ld}}} \left(\frac{R_{\text{ld}}}{R} - 1\right)$ $\sigma < 0$

Abermann et al., Thin Solid Films, 1979; Cammarata et al., J. Mat. Res. 2000
Stage I: capillary-induced compressive stress

- Mays et al. (1968) estimated the surface stress generated during the evaporative deposition of gold onto an amorphous carbon substrate in ultrahigh vacuum
- Using electron diffraction, the average lattice constant varied from 0.4075 nm to 0.4063 nm as the radius of curvature of the nanocrystal varied from very large values down to ~2nm.
- A value of *f* to be 1.175 N/m could be determined, which is comparable with the surface energy of gold: γ=1.4 J/m²;

Stage II: attractive force during island coalescence

• Creation of grain boundaries during island coalescence induces tensile stress

Ag films on SiO₂

Courtesy of Eric Chason

Stage II: attractive force during island coalescence

• Polycrystalline metal films

• Amorphous Ge films

- Similar CTC behavior also observed for amorphous films, related to the VW growth
- By comparison with Ag, Al films develops tensile stress at the very begining of growth
- Increasing the substrate temperature shifts the tensile peak to larger film thickness -> larger islands formation

Floro et al., J. Appl. Phys. 89, 4886 (2001)

Stage II: attractive force during island coalescence

Polycrystalline Ag films (thermal evaporation)

- Even once numerous GB have formed (h~120 Å), the fim force remains very low
- The maximum in the tensile stress-thickness coincides with late channel stages, for which the fractional substrate coverages is ~0.95, i.e. just before film continuity
- The magnitude of the 'tensile maximum' decreases with increasing deposition temperature, due to larger grain size at film continuity, as supported by FEM calculations

Stage II: origin of tensile stress upon island coalescence

- Free surfaces convert to grain boundaries at expense of strain energy
- Driving force: surface energy gain: $\gamma_{gb}-2\gamma_s < 0$

- Increase in strain energy
- Decrease in surface energy

$$\Delta E_{\text{strain}} = hL^2 \frac{\sigma^2}{\left(\frac{E}{1-\nu}\right)}.$$

$$\Delta E_{
m interface} = -4Lh\Delta\gamma$$

$$\Delta \gamma = \gamma_s - \frac{1}{2} \gamma_{gb} > 0$$

This model predicts a critical value for tensile stress

$$\sigma_{crit} = 2\sqrt{\frac{Y_f \Delta \gamma}{L}} \longrightarrow 1-2 \text{ GPa!}$$

The dependence on L^{-1/2} suggests that **finer-grained materials** will have **larger tensile stress** generated due to more grain boundaries formed per unit area of film But this model largely overestimates experimental tensile stress values, and it considers an unrealistic geometry of grain boundary formation

Stage II: origin of tensile stress upon island coalescence

Attractive force between atoms makes grain boundary "snap" closed, and creates residual tensile stress

Multilayers

Force evolution during growth of multilayered films

Example 1: Mo/Si multilayers

- Alternate tensile/compressive stress state during growth
- Complex stress evolution in Mo layers: interfacial effects and transient phenomenon
- Surface stress change of similar amplitude at both interfaces

Force evolution during growth of multilayered films

Example 2: Pd/Si multilayers

- Both layers under compressive stress
- Complex stress evolution in Pd layers: interfacial effects
- Surface stress change of similar amplitude at both interfaces

Epitaxial growth – Stress relaxation

Stress relaxation in strained layer heteroepitaxy

Example: coherency stresses

Figure 6. a) Evolution of curvature (converted to units of stress-thickness) in In_{0.18}Ga_{0.72}As layers grown on GaAs(100).
b) Average stress in the film calculated from the curvature. 1 compressive stress due elastic strain as layers growth pseudomorphically on GaAs substrate.

2 plastic relaxation due to the introduction of misfit dislocation above a critical thickness (^)

Example: monitoring of QW growth

Growth of $In_xGa_{1-x}As$ quantum well (QW) on GaAs

direct correlation between the curvature change and the indium content x can be obtained from Stoney equation

$$\Delta \kappa = -\frac{6h_{QW}}{h_s^2} \times \frac{a_{InAs} - a_{GaAs}}{a_{GaAs}} x$$

Zorn et al., Semicond. Sci. Technol. 21 (2006) L45–L48

Coupling with other *in situ* diagnostics

Coupling in situ MOSS and laser reflectance

- Film thickness h_f is determined from simultaneously collected oscillations in laser reflectance that results from Fabry–Perot constructive and destructive interferences during film growth
- This can also provide real-time monitoring of the morphological evolution and surface roughness of the films

Interface reactivity during Cu film growth

SDRS: principle of measurement

Surface differential reflectance spectroscopy

- Spectroscopic measurement: $\lambda \in [350 800 \text{ nm}]$
- Strong signal dynamic (signal to noise ratio: 1000:1)

$$\frac{\Delta R}{R_0}(t,\lambda) = \frac{R(t,\lambda) - R_0(\lambda)}{R_0(\lambda)}$$

Possibility to fit SDRS data to extract morphological parameters, but needs a model

Grachev et al., J. Phys. D: Appl. Phys. 46 (2013) 375305

Four-point probe electrical resistance measurement setup

Four-point probe electrical resistance measurement setup

Electrical resistance evolution

Typical curve of resistance vs. time for metal growth on insulator

Resistance variation over several orders of magnitude

Acquisition rate: 10 Hz

Electrical resistance evolution

Typical curve of resistance vs. time for metal growth on insulator

Coupling in situ MOSS, SDRS and resistivity

94

Cu on SiOx: growth characteristics

Comparison on SiOx and a-Ge

Segregation in Au/Ni multilayers

Coupling in situ MOSS and RHEED

Stop

40

40

oulk value

(a)

(b)

25

20

20

Au

30

Ni

30

25

Coupling in situ MOSS and RHEED

determination of Au surface concentration c_{Au}

(surface stress has been neglected)

S. Labat et al., Applied Physics Letters 75, 914 (1999)

Phase transformation in Mo/Si films

Coupling in situ MOSS, XRD and XRR

MPI beamline, ANKA synchrotron

SIXS beamline, SOLEIL synchrotron

Collaboration B. Krause (KIT, Germany)

Coupling in situ MOSS, XRD and XRR

• XRR signals

Standard angular dependence

Time-dependence of XRR signal at fixed q position

• XRD signals

Coupling in situ MOSS, XRD and XRR

- Initial tensile rise due to change in surface stress
- Sudden tensile stress change after 90s concomittant with increase of XRD signal and decrease of XRR oscillations magnitude
- Steady-state tensile stress upon further growth

Conclusions

Atomistic mechanisms of stress generation in polycrystalline films

Tensile stress sources

- Grain growth : Chaudari
- Crystallite coalescence : Nix and Clemens
- Attraction between columns and voids formation

grain boundary « zipping » process

Atomistic mechanisms of stress generation in polycrystalline films

Compressive stress sources

- Laplace pressure (isolated island) and capillary-induced stress (continuous film)
- Incorporation of excess atoms at surface ledges : Spaepen
- Incorporation of excess atoms in GB due to $\mu_s > \mu_{GB}$: Chason
- Excess population of adatoms on the surface: Friesen
- "Atomic peening" mechanism

Some possible stress relaxation mechanisms

Relaxation kinetics are strongly dependent on deposition temperature and microstructural length scales

- Interfacial shear for weak film/substrate interaction
- Inclined shear: dislocations on inclined glide planes
- Viscous flow in amorphous materials
- Surface diffusion : morphological rearrangement, Ostwald ripening, flow of adatoms in the GB

Floro et al., JAP 89 (2001) 4886
Wafer curvature laser deflectometry

- Non destructive, atomic-scale sensitive and time resolved technique
- Reflective material is required
- Macroscopic biaxial stress can be determined
- Limitations exist for film thickness/substrate ration > 0.5 %
- Ease implementation during thin film growth, thermal cycling, ion irradiation
- Possibility to implement during electrodeposition
- Coupling with other in situ diagnostics (RHEED, optical reflectance, ellipsometry,...) is possible

Review Article: Stress in thin films and coatings: Current status, challenges, and prospects

Grégory Abadias^{a)}

Département de Physique et Mécanique des Matériaux, Institut Pprime, UPR 3346, CNRS-Université de Poitiers-ENSMA, SP2MI, Téléport 2, F86962 Futuroscope-Chasseneuil, France

Eric Chason^{b)}

School of Engineering, Brown University, Providence, Rhode Island 02912-9104

Jozef Keckes^{c)}

Department of Materials Physics, Montanuniversität Leoben and Erich Schmid Institute for Materials Science, Austrian Academy of Sciences, Leoben 8700, Austria

Marco Sebastiani^{d)}

Engineering Department, University of Rome "ROMA TRE," Via della Vasca Navale 79, Rome 00147, Italy

Gregory B. Thompson^{e)}

Department of Metallurgical and Materials Engineering, The University of Alabama, P.O. Box 870202, Tuscaloosa, Alabama 35487-0202

Etienne Barthelf)

Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France

Gary L. Doll^{g)}

Mechanical Engineering Department, The University of Akron, Akron, Ohio 44325-0406

Conal E. Murrayh)

IBM T.J. Watson Research Center, Yorktown Heights, New York 10598

Chris H. Stoesselⁱ⁾ Eastman Chemical Co., 3788 Fabian Way, Palo Alto, California 94303

Ludvik Martinu^{j)} Department of Engineering Physics, Polytechnique Montréal, Montreal, Quebec H3T 1J4, Canada

(Received 3 November 2017; accepted 9 February 2018; published 5 March 2018)

May 27-31, 2019, Nice, France

2019 E-MRS Spring Meeting Symposium N: Nano-engineered coatings and thin films: from design to applications

Symposium Organizers:

Dr. K. Sarakinos, IFM Linköping (Sweden) Prof. G. Abadias, Institut Pprime (France) Prof. P. Patsalas, Univ. Thessaloniki (Greece)

Abstract submission deadline:

January 15, 2019

www.european-mrs.com/meetings/2019-spring-meeting