Mesures de flux in-situ en temps réel en épitaxie par jets moléculaire par spectrocopie dabsorption atomique modulée en longueur dabnde: application à des mesures de flux de gallium

temn

D. Vignaud

Institut de Electronique, de Microélectronique et de Nanotechnologie (IEMN, UMR CNRS 8520) Av. Poincaré, PO Box 60069, 59652 Villeneuve de Ascq Cedex FRANCE

sommaire

1. modulated atomic absorption and MBE: how to achieve real-time flux measurements ?

(presentation 14th MBE, Tokyo, 09/2006)

2. absorption atomique modulée: analyse du signal et optimisation

Element III flux measurements in MBE:

Requirements:

- adapted photon source
- two facing flanges

Wavelength-modulated atomic absorption spectroscopy (WMAAS)

Wavelength-modulated atomic absorption spectroscopy (WMAAS)

laser diode

lens

WMAAS already used for yttrium evaporation rate measurements (at 668nm) *W. Wang et al., Appl. Phys. Lett.* 67, 1375 (1995)

temn

FIG. 1. Schematic of the diode-laser-based FM spectroscopy system for evaporation rate control in a deposition chamber. EOM, electro-optic modulator; HCL, hollow cathode lamp; L, lenses; SL, Selfoc lens; PD1, wideband photodetector; PD2, photodetector; CIG1,2, chopped ion-gauge monitors; QCM, quartz crystal monitor; I, optical isolator; HP, half-wave plate.

temn Institut de le ctronique, de Microélectronique et de Nanotechnologie wavelength-modulated source (WMS) WMAAS set-up interferometer reference beam (active stabilization) lock-in 2 WMS² $2f_2$ f2 and focusing into the fiber lock-in 1 WMS 1 2f₁ f₁ **ECDL** OF MBE chamber PD1 PD substrate FPI Lw W PD WBS OF LD L' ∕BS L2 PD2 PiA shutter cell **Riber Compact 21 chamber** stability better than 0.05 GHz over \Rightarrow a useful long time scale absolute growth rate measurement by RHEED intensity oscillation

lettorique, de Microélectronique et de Nanotechnologie

Ga fluorescence (look at the Ga atoms !):

Ga absorption at 403 nm

temn

Ga transmission spectra (growth rate~0.8 ML/s on GaAs)

optimum scanning width for WMAAS signal at 2f

O. Marago et al., Appl. Phys. B 77, 809 (2003)

2x4 lines:

- hyperfine splitting
- isotopic distribution (60% Ga⁶⁹ and 40% Ga⁷¹)
- \Rightarrow 3 peak structure (Doppler broadening)

RHEED-WMAAS simultaneous measurements

RHEED-WMAAS simultaneous measurements

WMAAS low-flux sensitivity

1emn

growth rate = 0.027 ML/s Ga cell: T = 780°C

14/32

the laser diode output

15/32

sommaire

1. modulated atomic absorption and MBE: how to achieve real-time flux measurements ?

2. absorption atomique modulée: analyse du signal et optimisation

absorbance dun flux de gallium

temn

- ⇒ simulation du spectre dabsorption par une somme de 8 gaussiennes
 - 3 paramètres ajustables
 - alignement en longueur dabnde
 - absorbance maximum
 - élargissement Doppler
- ⇒ élargissement Doppler ~ 0.7 GHz
- \Rightarrow optimisation des paramètres de modulation :
 - v₀ (valeur moyenne)
 - Δv (modulation totale)
 - harmonique mesurée

Mesures de transmission directe

temn

afin de conserver un fonctionnement monomode de la source modulée, nécessité de moduler le courant en même temps que la longueur d**D**onde:

⇒ signal détecté modulé en intensité présence des harmoniques impaires

 \Rightarrow mesures différentielles (lock-in)

 \Rightarrow chambre UHV dédiée, 1 seule cellule (T_{Ga}=980°C)

absorption atomique modulée = $f(\Delta v)$

lemn

 $v_0 = v$ (absorbance maximum)

1 paramètre ajustable: - absorbance maximum

 $\Delta v = 2.6 \& 13 \text{ GHz}$

 $\Delta v = 5.2 \text{ GHz}$

 $\Delta v = 7.8 \text{ GHz}$

19/32

<u>absorption atomique modulée = $f(v_0)$ </u>

mesures à large modulation

mesures à 2f (T_{Ga}=980°C)

lettorique, de Microélectronique et de Nanotechnologie

absorption atomique modulée = f(flux photons)

 \Rightarrow saturation du signal à haut flux

saturation détecteur ?

saturation de labsorption induite par transitions stimulées ?

absorption atomique saturée: modèle du gallium à 3 niveaux

temn

 N_3 équations de volution: (3) $\frac{dN_1}{dt} = \sigma \Phi \left(N_3 - N_1 \right) + A_{31} N_3$ $\frac{dN_2}{dt} = A_{32}N_3$ $\frac{dN_3}{dt} = \sigma\Phi(N_1 - N_3) - A_{31}N_3 - A_{32}N_3$ $\frac{d\Phi}{dt} = c\,\sigma\Phi(N_3 - N_1)$ 417 nm σΦ A₃₂ A₃₁ 403 nm (2) N_2 avec N_i , $\Phi = f(x, y, z)$ N_1 (1) γN_2^0 γN_1^0 γ supposant N_i , $\Phi = f(z)$ à faible absorbance $\begin{cases} \frac{dN_1}{dt} = \sigma \Phi \left(N_3 - N_1 \right) + A_{31} N_3 + \gamma N_1^0 - \gamma N_1 \\ \frac{dN_2}{dt} = A_{32} N_3 + \gamma N_2^0 - \gamma N_2 \\ \frac{dN_3}{dt} = \sigma \Phi \left(N_1 - N_3 \right) - A_{31} N_3 - A_{32} N_3 - \gamma N_3 \end{cases}$ à T_{Ga} = 980°C : $N_1^0 / N_2^0 \sim 1.3$ $N_1^{0} / N_3^{0} \sim 10^{12}$

24/32

temn

lettorique, de Microélectronique et de Nanotechnologie

absorption atomique modulée = f(T_{Ga})

27/32

temn

29/32

Conclusions

- système de mesure de flux en temps réel en MBE décrit, à partir de mesures dabsorption atomique modulée en longueur dande
- le cÊ ur du système est basé sur une diode laser montée en cavité étendue et un interféromètre pour stabilisation active de la longueur donde
- résultats obtenus pour des vitesses de croissance dans la gamme 0.01 Ë 2.6 ML/s
- dépendance linéaire du signal dabsorption atomique modulé avec la croissance
- bruit équivalent à 0.01 ML/s
- paramètres de modulation étudiés \Rightarrow harmonique optimum 4f ou 6f
- absorption saturée à fort flux de photons (modèle à 3 niveaux)
- réponse du système satisfaisante même avec des hublots peu transparents
 - ⇒ technique paticulièrement bien adaptée à des mesures de flux en temps réel en MBE (faible flux)

absorption atomique modulée et MBE: à suivre ???

- mesures pour dautres éléments III (AI et In) lévidentes
- mesures simultanées pour les 3 éléments III, en modulant la longueur de chaque élément à une fréquence différente
- mesures pour dautres éléments lexotiques D à voir au cas par cas Å

 \Rightarrow recherche dun partenaire industriel intéressé

Bibliographie

- ÏReal-time *in-situ* flux monitoring by wavelength-modulated atomic absorption spectroscopy in molecular beam epitaxy: Application to Ga flux measurementĐ by D. Vignaud & F. Mollot, J. Crystal Growth 301, 79 (2007)
- ÏReal-time *in situ* flux monitoring in molecular beam epitaxy by wavelength-modulated atomic absorption spectroscopyĐ
 by D. Vignaud J. Vac. Sci. Technol. B 25, 1398 (2007)

Remerciements

- Dr. F. Mollot (IEMN)
- Dr. P. Verkerk (PHLAM, Villeneuve d DAscq)
- Dr. O. Marago (CNR, Messine, Italie)
- Dr. X. Wallart, L. Desplanque, J.F. Lampin et J.L. Codron (IEMN)
- travail accompli grâce au support financier de le pluion Européenne, du gouvernement français et du Conseil Régional Nord-Pas de Calais

Thank you for your attentionÅ